S_{11}

INTRA- AND INTERCLUSTER INTERACTIONS IN FLUORIDES CHARACTERIZED BY DIMERIC, TRIMERIC AND TETRAMERIC MAGNETIC UNITS

A. Tressaud*, G. Demortain and J. Darriet

Laboratoire de Chimie du Solide du CNRS, Université de Bordeaux I, 33405 Talence Cédex (Franc

STRUCTURES

 $Cs_3Fe_2F_9$ and $Cs_3V_2O_2F_7$ derive from the (2H) CsNiF₃ type by the presence of ordered vacancies (1 over 3) within the infinite $(MF_3)_n^n$ chains; Fe_2F_9 or $V_2O_2F_7$ magnetic groups of two octahedra sharing a face are therefore obtained.

In the hexagonal polytypes of perovskite $Rb_3Co_2CdF_9$, Cs_M_3CdF_12 (M^T = Co, Ni) and Cs_M_4CdF_15 (M^T = Co, NI), linear units of two, three or four octahedra shared by faces and containing the paramagnetic species are separated one from each other by diamagnetic CdF₆ groups, respectively. Magnetic trimers of octahedra connected by <u>trans</u>-corners

Magnetic trimers of octahedra connected by trans-corners have been obtained in Ba_CaCuFe_F_14 which derives from the usovite type. On the other hand the presence of closely packed M_4F_{20} tetramers, which are formed of octahedra linked together by <u>cls</u>-corners, characterizes the structure of RuF₅ and OsF₅.

MAGNETISM

In Cs₃V₂O₂F₇, the exchange interaction between the two V⁴⁺ (d¹) ions can be described with the Anderson's model. Both magnetic susceptibility data and specific heat measurements yield to antiferromagnetic exchange interaction (J/k \approx -13.6 K). The magnetic data of the Cs₃Fe₂F₉ can be fitted on the basis of weak ferromagnetic interactions within Fe₂F₉ dimers (J/k \approx 1K), which is unusual for d⁵ ions.

The magnetic properties of the hexagonal polytypes of perovskite can be interpreted in terms of isolated units using a model based on HDVV Hamiltonian. The ferromagnetic intracluster interactions have been confirmed using inelastic diffusion of neutrons.

 $_{2+}$ In Ba₂CaCuFe₂F₁₄, the trimers consist of two Fe³⁺ and one Cu⁺ ions. The exchange interaction is antiferromagnetic (J/k \approx -19K). At very low temperature a three-dimensional ordering has been observed (T_N \neq 2.5K). The magnetic behavior of Ru and Os pentafluorides can be also described in terms of antiferromagnetic intracluster interactions (J/k \approx -8K) in a large temperature range.